DEPARTMENT OF MECHANICAL ENGINEERING GURU JAMBHESHWAR UNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR

B.Tech. (Mechanical Engineering) Programme

III- Semester

Sr.	Category	Course	e Code	Course Title	Hou	rs per v	veek	Course Credits			
No.		Theory	Practical		L	Т	P	Theory	Practical	Total	
1.	Basic Science Courses	BSC201-T		Maths-III	3	0	0	3.0		3.0	
2.	Engineering Science Courses	ESC-ECE201-T		Basics of Electronics Engineering	3	0	0	3.0		3.0	
3.	Engineering Science Courses	ESC-ME201-T		Engineering Mechanics	3	0	0	3.0		3.0	
4.	Professional Core Courses	PCC-ME201-T	PCC-ME201-P	Mechanics of Solids-I	3	1	2	4.0	1.0	5.0	
5.	Professional Core Courses	PCC-ME202-T	PCC-ME202-P	Production Technology	2	0	4	2.0	2.0	4.0	
6.	Professional Core Courses	PCC-ME203-T		Thermodynamics	3	0	0	3.0		3.0	
7.	Mandatory Courses	МС103-Т		Indian Constitution	3	0	0	0.0		0.0	
	•				20	1	6			·	
Total	credits									21	

3rd Semester

MATHS-III (THEORY)

General Course Information

Course Code: BSC201-T	Course Assessment Methods (internal: 30; external:
Course Category: Basic Science Course	70) Two minor tests each of 20 marks, Class
Course Credits: 3.0	Performance measured through percentage of lectures
Contact Hours: 3 hours/week (L: 3; T: 0)	attended (4 marks) Assignment and quiz (6 marks), and
Mode: Lectures	end semester examination of 70 marks.
Examination Duration: 3 hours	For the end semester examination, nine questions are to
	be set by the examiner. Question number one will be
	compulsory and based on the entire syllabus. It will
	contain seven short answers type questions. Rest of the
	eight questions is to be given by setting two questions
	from each of the four units of the syllabus. A candidate
	is required to attempt any other four questions selecting
	one from each of the remaining four units. All
	questions carry equal marks.

Course Outcomes

Sr. No.	Course Outcomes	RBT Level
CO1	Students will be able to define concepts and terminology of Fourier series and Fourier	Lever L1
	transforms, Functions of complex variables, Power Series and, Probability distributions and	
	hypothesis testing.	
CO2	Students will be able to solve problems using Fourier transforms in domains like digital	L2
	electronics and image processing	
CO3	Students will be able to apply mathematical principles to solve computational problems	L3
CO4	Students will be able to compare various probability distributions.	L4
CO5	Students will be able to select suitable hypothesis testing methods for given problems and interpret the respective outcomes	L5
CO6	Students will be able to integrate the knowledge of Fourier series and Fourier transforms,	L6
000	Functions of complex variables, Power Series and, Probability distributions and hypothesis	10
	testing for solving real world problems	

Course Contents

UNIT-I

Fourier Series and Fourier Transforms: Euler's formulae, conditions for a Fourier expansion, change of interval, Fourier expansion of odd and even functions, Fourier expansion of square wave, rectangular wave, saw-toothed wave, half and full rectified wave, half range sine and cosine series.

UNIT-II

Fourier integrals, Fourier transforms, Shifting theorem (both on time and frequency axes), Fourier transforms of derivatives, Fourier transforms of integrals, Convolution theorem, Fourier transform of Dirac delta function.

UNIT-III

Functions of Complex Variable: Definition, Exponential function, Trigonometric and Hyperbolic functions, Logarithmic functions. Limit and Continuity of a function, Differentiability and Analyticity. Cauchy-Riemann equations, necessary and sufficient conditions for a function to be analytic, polar form of the Cauchy-Riemann equations. Harmonic functions.

UNIT-IV

Complex integral, Cauchy Gaursat theorem (without proof), Cauchy integral formula (without proof), Power series, radius and circle of convergence, Taylor's Maclaurin's and Laurent's series. Zeroes and singularities of complex functions, Residues. Evaluation of real integrals using residues (around unit and semi-circle only).

Text and Reference Books

- 1. F. Kreyszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2015.
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44th edition, 1965.
- 3. R.K. Jain, S.R.K. Iyenger. Advance Engineering. Mathematics, 4th edition, Narosa Publishing House, 2012.
- 4. Michael D. Greenberg, Advanced Engineering Mathematics, 2nd edition, Pearson Education, 2002.
- 5. Johnson and Miller Probability and statistics for Engineers, 8th edition, Pearson Education India, 2015.

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1													2	2
CO2	2	2	2	2										2	2
CO3	2	2	2	2										2	3
CO4	3	3	2	3										2	3
CO5	3	3	2	3										2	3
CO6	3	3	2	3										2	3
1 (01' 1	1 / T)	•	() r 1	. /3 . 1	•	a (a	1 1 1	1/*** 1	````````````````````````````````````						

1: (Slight/Low), 2 : (Moderate/Medium),

^{3: (}Substantial/High)

BASICS OF ELECTRONICS ENGINEERING (THEORY)

General Course Information

Course Code: ESC-ECE201-T Course Category: Engineering Science Course Course Credits: 3.0 Contact Hours: 3 hours/week (L: 3; T: 0) Mode: Lectures Examination Duration: 3 hours	Course Assessment Methods (internal: 30; external: 70) Two minor tests each of 20 marks, Class Performance measured through percentage of lectures attended (4 marks) Assignment and quiz (6 marks), and end semester examination of 70 marks. For the end semester examination, nine questions are to be set by the examiner. Question number one will be compulsory and based on the entire syllabus. It will
	contain seven short answers type questions. Rest of the eight questions is to be given by setting two questions from each of the four units of the syllabus. A candidate is required to attempt any other four questions selecting one from each of the remaining four units. All questions carry equal marks.

Course Outcomes

Sr. No.	Course Outcomes							
CO1	Students will be able to define the behavior of semiconductor devices.	L1						
CO2	Students will be able to describe the current flow of a bipolar transistor in CB, CE and CC configurations.	L2						
CO3	Students will be able to illustrate the biasing of transistors and FETs for amplifier applications.	L3						
CO4	Students will be able to examine simple amplifier and oscillator circuits.	L4						

Course Contents

UNIT-I

Semi-Conductors and Diodes: Introduction, Insulators, semiconductors and metals, Mobility and conductivity, Intrinsic and extrinsic semiconductors, Charge density, current components in semiconductors, Continuity equation, PN junction diode- Characteristics and analysis, Types of diodes- Zener, Photodiodes, LED. Rectifiers: Half wave rectifier, Full wave rectifier, bridge rectifier and their analysis, Series and shunt diode clippers, Clipping at two independent levels, Clamping operation, Clamping circuit, Basic regulator supply using zener diode.

UNIT-II

Transistors: Construction and characteristics of BJT, Transistor configuration: CB, CE, CC configuration, Transistor at low frequency, Small signal low frequency transistor model(h-parameters), Analysis of transistor amplifier using h-parameters, Transistor biasing and bias stabilization: Operating point, Stability factor, Analysis of fixed bias, collector to base bias, Emitter resistance bias circuit and self bias circuit, Bias compensation techniques.

UNIT-III

Field Effect Transistor: Construction and characteristics of JFET, JFET biasing circuit, JFET amplifier, MOSFET construction and characteristics.

UNIT-IV

Amplifiers and Oscillators: Classification of amplifiers, concept of feedback, Characteristics of feedback amplifiers, Single stage RC coupled amplifier, Oscillators, Criterion for oscillation, Types of oscillators: Hartley oscillator, Colpitt oscillator, RC-phase shift oscillator, Wein bridge oscillator.

Text and Reference Books

- 1. Integrated devices & Circuits by Millman & Halkias, McGraw Hill.
- 2. Electronics Devices and Circuit Theory by Robert L. Boylestad, Pearson.
- 3. Electronics Devices and Circuits-II by A.P.Godre & U.A. Bakshi.
- 4. Electronics Devices and Circuit by G.K. Mithal.

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1			2					2		2	1
CO2	3		2	2		1	2	1	1		1	2		2	1
CO3	2	3	2	1		1	2		1	1	1	2		2	1
CO4	2	3	3	3	3	2	1	1	2	1	1	2		2	1

1 : (Slight/Low), 2:(Moderate/Medium), 3 :

3 :(Substantial/High)

ENGINEERING MECHANICS (THEORY)

General Course Information

Course Code: ESC-ME201-T	Course Assessment Methods (internal: 30; external:
Course Category: Engineering Science Course	70) Two minor tests each of 20 marks, Class
Course Credits: 3.0	Performance measured through percentage of lectures
Contact Hours: 3 hours/week (L: 3; T: 0)	attended (4 marks) Assignment and quiz (6 marks), and
Mode: Lectures	end semester examination of 70 marks.
Examination Duration: 3 hours	For the end semester examination, nine questions are to
	be set by the examiner. Question number one will be
	compulsory and based on the entire syllabus. It will
	contain seven short answers type questions. Rest of the
	eight questions is to be given by setting two questions
	from each of the four units of the syllabus. A candidate
	is required to attempt any other four questions selecting
	one from each of the remaining four units. All
	questions carry equal marks.

Course Outcomes

Sr. No.	Course Outcomes	RBT Level
CO1	Students will be able to describe scalar and vector techniques for analyzing forces in statically	L1
	determinate structures.	
CO2	Students will be able to locate centroid, centre of gravity of different types of symmetrical	L2
	and unsymmetrical sections.	
CO3	Students will be able to apply Newton's laws of Motions to solve real-world problems.	L3
CO4	Students will be able to examine the physical significance of moment of inertia e.g in railway,	L4
	flyovers, Bridges, automobiles etc.	

Course Contents

UNIT-I

Review of Basic Force System: Laws of mechanics, Vector algebra review, Moment of a force about a point and axis, Couple and couple moment, Addition and subtraction of couples, Moment of a couple about a line, Resultant of a force system. Problems

Equilibrium of forces: Introduction, Lami's theorem, Methods for the equilibrium of coplanar forces, Analytical method for the equilibrium of coplanar forces, free body diagram, general equations of equilibrium, Tension in a string, Problems

UNIT-II

Truss and Frames: Types of frames, Types of stresses in frames (Tensile and compressive), Assumptions for forces in the members of a perfect frame, Analytical methods for the forces, Method of joints, Method of sections (or Method of moments), simply supported trusses, Problems

Centroid and centre of gravity: Definition, Centroid of regular shapes, Symmetrical sections, Unsymmetrical sections, Reference axis, Centre of gravity of solid bodies, Centroid and centre of gravity of hollow sections. Problems

UNIT-III

Moment of Inertia: Introduction and significance, Parallel axis theorem, Perpendicular axis theorem, Mass moment of inertia, Area moment of inertia of regular shapes: L-sections, T-sections, I-sections, Moment of inertia of unsymmetrical sections, hollow sections, Product of inertia, Properties of product of inertia, Principal axis. Problems

Particle dynamics- Rectilinear motion, Plane curvilinear motion (rectangular, path and polar coordinates), Newton's 2nd law (rectangular, path and polar coordinates), Work- kinetic energy, power, potential energy, Impulse-momentum (linear, angular), Impact (Direct and oblique). Problems

UNIT-IV

Virtual work: Introduction, Concept and principle of virtual work, Virtual displacements, Sign conventions, Applications of principle of virtual work on beams carrying point load, uniformly distributed load, Applications of virtual work on ladders. Problems

Friction: Introduction, Types of friction, Laws of friction, Equilibrium of a body on a rough horizontal plane and inclined plane, Equilibrium of a body on a rough inclined plane subjected to a force acting along the inclined plane, Equilibrium of a body on a rough inclined plane subjected to a force acting horizontally. Problems

Text and Reference Books

- 1. Irving H. Shames, Engineering Mechanics, 4th Edition, Prentice Hall
- 2. R.C. Hibbler (2017), Engineering Mechanics: Statics and Dynamics, Pearson Press.
- 3. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education
- 4. Reddy Vijaykumar K. and K. Suresh Kumar (2010), Singer's Engineering Mechanics
- 5. Bansal R.K.(2015), A Text Book of Engineering Mechanics, Revised eighth edition, Laxmi Publications
- 6. Khurmi R.S., Engineering Mechanics, 20th revised edition, S. Chand & Co.
- 7. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	1	1	2	1	1	1	1	1	3	3	3	1
CO2	3	3	2	2	2	1	1	1	1	2	1	3	3	3	1
CO3	3	3	3	2	1	2	1	1	1	2	1	3	3	3	2
CO4	3	3	3	3	2	3	2	2	2	1	2	3	3	3	2
CO5	3	3	2	1	1	2	1	1	1	1	1	3	3	3	1

1: (Slight/Low), 2:(Moderate/Medium),

3 :(Substantial/High)

MECHANICS OF SOLIDS-I (THEORY)

General Course Information

Course Code: PCC-ME201-T	Course Assessment Methods (internal: 30; external:
Course Category: Professional Core Course	70) Two minor tests each of 20 marks, Class
Course Credits: 4.0	Performance measured through percentage of lectures
Contact Hours: 4 hours/week (L: 3; T: 1)	attended (4 marks) Assignment and quiz (6 marks), and
Mode: Lectures and Tutorials	end semester examination of 70 marks.
Examination Duration: 3 hours	For the end semester examination, nine questions are to
	be set by the examiner. Question number one will be
	compulsory and based on the entire syllabus. It will
	contain seven short answers type questions. Rest of the
	eight questions is to be given by setting two questions
	from each of the four units of the syllabus. A candidate
	is required to attempt any other four questions selecting
	one from each of the remaining four units. All questions
	carry equal marks.

Course Outcomes

Sr. No.	Course Outcome	RBT
		Level
CO1	Students will be able to understand the concept of stress and strain at a point.	L1
CO2	Students will be able to illustrate 2D & 3D stress systems and determine principal stresses &	L2
	planes and maximum shearing stresses & planes using analytical and graphical methods.	
CO3	Students will be able to draw Shear and Bending Moment diagrams for various beams	L3
	subjected to different types of transverse loads.	
CO4	Students will be able to employ stress-strain relationship for axially loaded members, circular	L4
	torsion members and members subjected to bending loads.	
CO5	Students will be able to design machine components subjected to combined torsion, bending	L5
	and axial loads.	

Course Contents

UNIT-I

Simple stresses and strains: General equations of equilibrium, free body diagram, Types of stresses and strains, Hooks law, elastic constants & their relationships, concept of stress at a point, stress-strain diagrams, stresses and strains in compound bars under axial loading, stresses in composite systems, thermal stresses.

Complex stresses: Two and three dimensional stress systems, rectangular stress components, principal stresses and planes, Mohr's stress circle.

UNIT-II

Shear force and bending moment diagrams: Relation between the rate of loading, the shear force and the bending moment. SF & BM calculations & diagrams for (i) cantilevers (ii) simply supported beams with or without over-hang (iii) fixed beams under (i) concentrated loads, (ii) uniformly distributed loads over whole span or a part of it, (iii) combination of concentrated loads and uniformly distributed loads, (iv) uniform varying loads (v) application of moments.

UNIT-III

Centroid and Moment of Inertia: Centroid and MOI for different shaped beam cross sections, Parallel axes theorem, perpendicular axis theorem, principal axes, principal moments of inertia, product of inertia, ellipse of inertia, Properties of beam cross section.

Bending stresses in beams: Theory of simple bending, position of neutral axis, flitched beams. Unsymmetrical Bending, Slope of the neutral axis, stresses & deflections, shear center and the flexural axis.

Shearing stresses in beams: Introduction, shearing stress variation, variation of shear stress in beam cross section, shear stress distribution for typical sections.

UNIT-IV

Torsion: Torsion of circular shafts, comparison of Solid and hollow circular shafts, stepped shaft & composite circular shafts, statically indeterminate shafts, stresses in shafts under combined torsion, bending and axial loads.

Columns & Struts: Column under axial load, concept of instability and buckling, slenderness ratio, derivation of Euler's formulae for the elastic buckling load, Eulers, Rankine, Gordon's formula, Johnson's empirical formula for axial loading columns and their applications, eccentric compression of a short strut of rectangular & circular sections.

Text and Reference Books

- 1. Mechanics of Solid by Muubeen Abdul, Pearson Publications, India.
- 2. Engineering Mechanics of Solids by Popov E.P, Prentice Hall of India
- 3. Mechanics of Materials by Ferdinand P. Beer and E. Russel Johnston, Jr. Second Edition, McGraw Hill.
- 4. Solid Mechanics by Kazmi, Tata Mc Graw Hill.
- 5. Strength of Materials by G.H.Ryder, Macmillan, India.
- 6. Strength of Materials by D.S. Bedi, S. Chand & Co. Ltd.
- 7. Advanced Mechanics of Solids and Structures by N. Krishan Raju and D.R.Gururaje, Narosa Publishing House.
- 8. Strength of Materials by Andrew Pytel and Fredinand L. Singer, Int. Student Ed. Addison, Wesley Longman.
- 9. Strength of Materials by Sadhu Singh, Khanna Publishers, India.
- 10. Strength of Materials by Timoshenko S, East-West Press Pvt. Ltd., New Delhi.

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2						1	1	2	3	3	3	1
CO2	3	1	2	2	2				1	1	2	3	3	3	1
CO3	3	1	2						1	1	2	3	3	3	1
CO4	3	1	2	2	2				1	1	2	3	3	3	1
CO5	3	2	3	3	2				1	1	2	3	3	3	1
$1 \cdot (Slic)$	(Slight/Low) 2: (Moderate/Medium) 3: (Substantial/High)														

1: (Slight/Low), 2:(Moderate/Medium),

3 :(Substantial/High)

MECHANICS OF SOLIDS-I (LAB)

General Course Information

Course Code: PCC-ME201-P	Course Assessment Methods (internal: 30; external:
Course Category: Professional Core Course	70): Internal practical evaluation is to be done by the
Course Credits: 1.0	course coordinator. The end semester practical
Mode: Practical	examination will be conducted jointly by external and
Contact Hours: 02 hours per week	internal examiners.
*	

Course Outcomes

Sr. No.	Course Outcome							
		Level						
CO1	Students will be able to perform tensile test, compression test, bending test, shear test,	L1						
	hardness test, impact test and torsion test to determine mechanical properties such as strength,							
	hardness, impact strength and toughness of ductile and brittle materials.							
CO2	Students will be able to predict the behaviour of ductile and brittle materials under different	L2						
	types of loading.							
CO3	Students will be able to Interpret the experimental results for material selection in engineering	L3						
	applications.							
CO4	Students will be able to compare the materials and utilize the appropriate materials in design	L4						
	considering engineering properties, sustainability, cost and weight.							

Lab Contents

- 1. To study the Universal Testing Machine (UTM) and perform the tensile test on the given specimen (Mild steel and Cast Iron).
- 2. To perform compression test on UTM on the given specimen (Mild steel and Cast Iron).
- 3. To perform bending tests on UTM on the given specimen.
- 4. To perform the shear test on UTM on the given specimen.
- 5. To perform the torsion test on the given specimen (Mild steel and Cast Iron).
- 6. To perform the Rockwell hardness test.
- 7. To perform the Brinell hardness test.
- 8. To perform the Vickers hardness test.
- 9. To perform the Impact tests (Izod & Charpy).
- 10. To perform the Erichsen cupping sheet metal test.

NOTE: The list is indicative. The teacher can alter/add more number of experiments as per the requirement.

Course Articulation Matrix (CO to PO/PSO Mapping)

									0/						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	2	2				1	1	2	3	3	3	2
CO2	3	2	2	2	2				1	1	2	3	3	3	2
CO3	3	3	2	2	2				1	1	2	3	3	3	2
CO4	3	3	2	2	2				1	1	2	3	3	3	2

1: (Slight/Low), 2:(Moderate/Medium),

^{3 :(}Substantial/High)

PRODUCTION TECHNOLOGY (THEORY)

General Course Information

Course Code: PCC-ME-202-T	Course Assessment Methods (internal: 30; external:
Course Category: Professional Core Course	70) Two minor tests each of 20 marks, Class
Course Credits: 2.0	Performance measured through percentage of lectures
Contact Hours: 2 hours/week (L: 2; T: 0)	attended (4 marks) Assignment and quiz (6 marks),
Mode: Lectures	and end semester examination of 70 marks.
Examination Duration: 3 hours	For the end semester examination, nine questions are
	to be set by the examiner. Question number one will be
	compulsory and based on the entire syllabus. It will
	contain seven short answers type questions. Rest of the
	eight questions is to be given by setting two questions
	from each of the four units of the syllabus. A
	candidate is required to attempt any other four
	questions selecting one from each of the remaining
	four units. All questions carry equal marks.

Course Outcomes

Sr. No.	Course Outcomes	RBT
		Level
CO1	Students will be able to define the various tools including machine tools, cutting tools and	L1
	measuring tools, forces involved and their effect in cutting, work holding devices and methods	
	required to manufacture different components.	
CO2	Students will be able to describe different types of tools, work holding devices and	L2
	manufacturing methods along with their principles.	
CO3	Students will be able to solve different kind of problems related to tools and manufacturing	L3
	methods selection.	
CO4	Students will be able to analyse various tools on the basis of economics of machining.	L4
CO5	Students will be able to select and design appropriate tool and method required to manufacture	L5
	a particular component economically.	

Course Contents

UNIT-I

Theory of Metal Cutting: Introduction, Metal Cutting Machines and Tools, Elements of Metal Cutting, Geometry of Cutting Tools, Orthogonal and Oblique Cutting, Chip Formation, Chip Control, Forces Acting on a Single Point Tool, Measurement of Cutting Forces, Mechanics of Metal Cutting, Shear Plane, Chip Thickness Ratio, Shear Angle, Velocity Relationship in Orthogonal Cutting, Forces on the Chips, Stress and Strain in the chip, Work done during Metal Cutting, Heat Generation and Temperatures in Metal Cutting

Tool Wear and Machinability: Introduction, Tool Failure, Tool Wear, Tool Life, Cutting Speed, Feed and Depth of Cut, Tool Materials, Cutting Fluids, Power required for cutting, Machinability, Single Pass, Multi Pass and Multistage Machining

UNIT-II

Jigs and Fixtures: Introduction, Definitions and Concepts of Jig and Fixture, Advantages of Using Jigs and Fixtures, Elements of Jigs and Fixtures, Degree of Freedom, Types of Jigs, Types of Fixtures

Work Holding Devices: Basic Requirements of Work Holding Devices, Location: Principles, Methods and Devices, Clamping: Principles, Methods and Devices

UNIT-III

Manufacturing Methods: Turret Lathes and Their Characteristics, Classification of Gear Production Methods, Gear Generation, Indexing of Gears, Gear Hobbing, Gear Shaping, Gear Finishing Methods: Shaving, Burnishing, Grinding, Honing

Economics of Machining: Introduction, Choice of Feed, Economic Cutting Speed, Economics of Metal Removal, Minimum Cost/Component, Determination of Cutting Speed for Minimum Cost, Tool Life for Minimum Cost, Cutting Speed for Maximum Production, Tool Life for Maximum Production, Maximum Production Rate, Maximum Profit Rate

UNIT-IV

Non-Conventional Machining: Introduction, Classification of Non-Conventional Machining Processes, Process Selection, Ultrasonic Machining, Abrasive Jet Machining, Electro Chemical Machining, Electric Discharge Machining, Wire Electric Discharge Machining(WEDM), Electron Beam Machining, Laser Beam Machining

Metrology: Measurements, Linear and Angular Simple Measuring Instruments, Screw Gauge, Sine Bar, Auto-Collimator, Comparator-Mechanical, Electrical, Optical, Surface Finish and its Measurement

Text and Reference Books

- 1. Manufacturing science: Ghosh and Malik, E.W. Press
- 2. Principles of metal cutting: Sen and Bhattacharya, New Central Book.
- 3. Metal cutting principles: Shaw, MIT Press Cambridge
- 4. Manufacturing analysis: Cook, Adisson-Wesley
- 5. Modern machining processes: Pandey and Shan, Tata McGraw Hill Publications
- 6. Production Technology: P.C. Sharma, S. Chand Publication
- 7. Production Technology: O.P. Khanna, Dhanpat Rai Publication

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1								3	3		
CO2	3	2	1	1						2		3	3		
CO3	3	3	2	1	1				1	2		3	3		
CO4	3	3	2	2	1			1	2	2		3	3	1	1
CO5	3	2	3	2	2			1	2	2		3	3	2	3

1 : (Slight/Low), 2:(Moderate/Medium), 3 :(Substantial/High)

PRODUCTION TECHNOLOGY (LAB)

General Course Information

Course Code: PCC-ME202-P	Course Assessment Methods (internal: 30; external:
Course Category: Professional Core Course	70): Internal practical evaluation is to be done by the
Course Credits: 2.0	course coordinator. The end semester practical
Mode: Practical	examination will be conducted jointly by external and
Contact Hours: 04 hours per week	internal examiners.
, A , A , A , A , A , A , A , A , A , A	

Course Outcomes

Sr. No.	Course Outcomes	RBT								
		Level								
CO1	Students will be able to define the various manufacturing processes like casting,	L1								
	machining and welding, and machine tools.									
CO2	Students will be able to describe different manufacturing processes and machine tools	L2								
	which can be used to manufacture a component.									
CO3	Students will be able to choose a particular type of method required to manufacture a	L3								
	particular component.									
CO4	Students will be able to experiment on various machine tools for components	L4								
	manufacturing.									
CO5	Students will be able to judge and design appropriate manufacturing processes and	L5								
	machine tool required to manufacture of a particular component.									

Lab Contents

- 1. To make a pattern for a given casting with all the necessary allowances, parting line, running system details. Prepare the mold and make the casting. Investigate the casting defects and suggest the remedial measures.
- 2. To make a component involving horizontal and vertical welding and study the welding defects and suggests their remedies.
- 3. To prepare a job on surface grinder/cylindrical grinder and measure the various parameters of the finished piece.
- 4. To cut external threads on a lathe.
- 5. Leveling of machine tools and testing their accuracy.
- 6. Disassembly and assembly of small assemblies such as tail stock, bench vice, screw jack etc.
- 7. Development and manufacture of complex sheet-metal components such as funnel etc.
- 8. Multi slot cutting on milling machine by indexing.
- 9. Drilling and boring of a bush.
- 10. To study and prepare a job on wire electric discharge machine.

NOTE: The list is indicative. The teacher can alter/add more number of experiments as per the requirement.

Cour	course Articulation Matrix (CO to 10/150 Mapping)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1								3	3		
CO2	3	2	1	1						2		3	3		
CO3	3	3	2	1	1				1	2		3	3		
CO4	3	3	2	2	1			1	2	2		3	3	1	1
CO5	3	2	3	2	2			1	2	2		3	3	2	3
1 : (Slig	: (Slight/Low), 2:(Moderate/Medium), 3:(Substantial/High)														

Course Articulation Matrix (CO to PO/PSO Manning)

THERMODYNAMICS (THEORY)

General Course Information

Course Code: PCC-ME203-T	Course Assessment Methods (internal: 30; external:
Course Category: Professional Core Course	70) Two minor tests each of 20 marks, Class
Course Credits: 3.0	Performance measured through percentage of lectures
Contact Hours: 3 hours/week (L: 3; T: 0)	attended (4 marks) Assignment and quiz (6 marks), and
Mode: Lectures	end semester examination of 70 marks.
Examination Duration: 3 hours	For the end semester examination, nine questions are to be set by the examiner. Question number one will be compulsory and based on the entire syllabus. It will contain seven short answers type questions. Rest of the eight questions is to be given by setting two questions from each of the four units of the syllabus. A candidate is required to attempt any other four questions selecting one from each of the remaining four units. All questions carry equal marks.

Course Outcomes

Sr. No.	Course Outcome	RBT Level
CO1	Students will be able to describe the conditions involving heat and work interactions.	L1
CO2	Students will be able to differentiate high and low grade energies.	L2
CO3	Students will be able to solve the problems involving change in thermodynamic properties of substances.	L3
CO4	Students will be able to examine and compare the performance of energy conversion devices.	L4

Course Contents

UNIT-I

Basic Concepts: Macroscopic and Microscopic Approaches, Thermodynamic Systems, Surrounding and Boundary, Thermodynamic Property– Intensive and Extensive, Thermodynamic Equilibrium, State, Path, Process and Cycle, Quasistatic, Reversible and Irreversible Processes, Working Substance, Concept of Thermodynamic Work and Heat, Equality of Temperature, Zeroth Law of Thermodynamic and its utility. Problems.

First Law of Thermodynamics: Energy and its Forms, Energy and 1st law of Thermodynamics, Internal Energy and Enthalpy, PMM-1, Steady flow energy equation, 1st Law Applied to Non- flow process, Steady Flow Process and Transient Flow Process, Throttling Process and Free Expansion Process. Problems.

UNIT-II

Second Law of Thermodynamics: Limitations of First Law, Thermal Reservoir, Heat Source and Heat Sink, Heat Engine, Refrigerator and Heat Pump, Kelvin- Planck and Clausius Statements and their Equivalence, PMM-2, Carnot Cycle, Carnot Heat Engine and Carnot Heat Pump, Carnot Theorem and its Corollaries, Thermodynamic Temperature Scale, Entropy, Clausius Inequality, Principle of Entropy Increase, Temperature Entropy Plot, Entropy Change in Different Processes, Introduction to Third Law of Thermodynamics. Problems.

Availability and Irreversibility: High and Low Grade Energy, Availability and Unavailable Energy, Loss of Available Energy Due to Heat Transfer Through a Finite Temperature Difference, Dead state of a system, Availability of a Non- Flow or Closed System, Availability of a Steady Flow System, Helmholtz and Gibb's Functions, Effectiveness and Irreversibility, Second law efficiencies of processes & cycles. Problems.

UNIT-III

Ideal and Real Gases: Concept of an Ideal Gas, Basic Gas Laws, Characteristic Gas Equation, Avogadro's law and Universal Gas Constant, P-V-T surface of an Ideal Gas, Vander Waal's Equation of state, Reduced Co-ordinates,

Compressibility factor and law of corresponding states, Mixture of Gases, Mass, Mole and Volume Fraction, Gibson Dalton's law, Gas Constant and Specific Heats, Entropy for a mixture of non-reactive gases. Problems.

Pure Substance: Pure Substance and its Properties, Phase and Phase Transformation, Vaporization, Evaporation and Boiling, Saturated and Superheat Steam, Solid – Liquid – Vapour Equilibrium, T-V, P-V and P-T Plots During Steam Formation, Properties of Dry, Wet and Superheated Steam, Property Changes During Steam Processes, Temperature – Entropy (T-S) and Enthalpy – Entropy (H-S) Diagrams, Throttling and Measurement of Dryness Fraction of Steam. Problems.

UNIT-IV

Thermodynamic Air Cycles: Introduction, Assumptions in Thermodynamic Cycles, Classifications of Thermodynamic Cycles, Reversible Cycle, Irreversible Cycle, Working of an Ideal Engine, Stirling Cycle, Ericsson Cycle, Bryton Cycle, Otto Cycle, Diesel Cycle, Dual Combustion Cycle. Problems.

Thermodynamic Relations: Maxwell Relations, Clapeyron Equation, Relations for changes in Enthalpy and Internal Energy & Entropy, Specific Heat Capacity Relations, Joule Thomson coefficient & inversion curve.

Text and Reference Books

- 1. Advanced engineering thermodynamics Adrian Bejan, Wiley, 4th edition.
- 2. Engineering thermodynamics- P. Chattopadhay, OXFORD, Revised 1st edition.
- 3. Thermodynamics: An Engineering Approach-Yunus Cengel and Michael Boles, Tata McGraw Hill, 8th edition.
- 4. Engineering Thermodynamics P K Nag, Tata McGraw Hill, 5th edition.
- 5. Fundamentals of Engineering Thermodynamics Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner and Margaret B. Bailey, Wiley, 7th edition.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2		2	1	1	1	1	1	2	3	3	1
CO2	3	3	3	2		2	1	1	1	1	1	2	3	3	1
CO3	3	3	3	3		3	1	1	2	2	2	2	3	3	2
CO4	3	3	3	3		3	1	1	2	2	2	3	3	3	2

Course Articulation Matrix (CO to PO/PSO Mapping)

1 : (Slight/Low), 2:(Moderate/Medium),

^{3 :(}Substantial/High)