
1

Laboratory Manual

of

Programming for Problem Solving

Prepared By:

Anju Godara

Assistant Professor

(Computer Science & Engg. Deptt.)

2

PROGRAMMING FOR PROBLEM SOLVING LAB

B.Tech. 1st Year I Sem.

Note:The programs may be executed using any available Open Source/ Freely available IDE.

Course Objectives: The students will learn the following:

 To work with an IDE to create, edit, compile, run and debug programs

 To analyze the various steps in program development.

 To develop programs to solve basic problems by understanding basic concepts in C like work with

operators and control statements etc.

 To develop modular, reusable and readable C Programs using the concepts like functions, arrays

etc.

 To Write programs using the Dynamic Memory Allocation concept.

 To create, read from and write to text and binary files.

Course Outcomes: The candidate is expected to be able to:

 Formulate the algorithms for simple problems

 Translate given algorithms to a working and correct program

 Correct syntax errors as reported by the compilers

 Identify and correct logical errors encountered during execution

 Represent and manipulate data with arrays, strings and structures

 Use pointers of different types

 Create, read and write to and from simple text and binary files

 Modularize the code with functions so that they can be reused

Hardware Requirement: Desktop Computer / laptop computer.

Software Requirement: Linux Operating System with GCC / TURBO C in WINDOWS OS / TURBO C++

 in WINDOWS OS.

Some of the Tools available are:

 CodeLite: https://codelite.org/

 Code::Blocks: http://www.codeblocks.org/

 DevCpp : http://www.bloodshed.net/devcpp.html

 Eclipse: http://www.eclipse.org

https://codelite.org/
http://www.codeblocks.org/
http://www.bloodshed.net/devcpp.html
http://www.eclipse.org/

3

INSTRUCTIONS TO STUDENTS FOR PREPARING PROGRAMMING IN C LAB REPORT

This lab manual is prepared to help the first year students with their practical understanding and

development of programming skills , and may be used as a base reference during the lab practical

classes.

Students have to submit Lab Exercise report of previous lab into corresponding next lab, and can be

collected back after the instructor/course co-ordinator after it has been checked and signed.At the end

of the semester, students should compile all the lab Excerise reports into single report and submit

during end semester sessional examinations.

4

List of Practical/Programs to be performed in Lab

Sr.

No

 Module Name Name of Program

1. Familiarization with

programming environment

Introduction to Programming,

Writing of Algorithms, Introduction

to Drawing flow Charts

/Preparation of Flowchart/ Steps for

Writing Code in C/ Turbo C.

1. First Basic Program-Writing a Single Statement.
2. Writing a Program to print your Basic details

Multi statements.

2 Variable types and type

conversions

1. WAP to perform simple Input-Output Operations
in C.

2. WAP to add two numbers.
3. WAP to perform simple arithmetic operations in

C(Addition, Subtraction, Multiplication,

Division, Modulus).

4. Write a simple program that print the result of

all the operators available in c (including pre/

post increment, bitwise and logical).
5. WAP to find area and perimeter of circle.
6. WAP to find area and perimeter of rectangle.
7. Given the values of three variable entered by

user, write a program to compute and display

the value of x, where x=a/(b-c).

8. Write a program to convert one data type to

another using auto conversion and casting.

Take the value from user input.

3 Branching and logical

expressions: Use of If, if- else,

Else if, nested if statements and

operators with them and switch

case statement

1. WAP to find whether a given number is positive
or not.

2. WAP to find greatest of two numbers.
3. WAP to find greatest of three numbers using

nested if/else if statements only.
4. WAP to find greatest of three numbers using &

operator.
5. WAP to find whether a given number is even or

odd.

6. Given the marks of a student studying five

different subject. Calculate average marks of

students and assign him/her Grade based on

following:Marks is equal or greater than 90 –

Grade A Marks equal or more than 75 and less

than 90 –Grade B Marks equal or more than 60

and less than 75 –Grade C Marks equal or more

than 50 and less than 60 –Grade D Marks less

than 50 –Grade F

7. WAP to find roots of a quadratic equation:

ax2+bx+c=0

8. WAP to print day of a week using switch case

statement

9. WAP to design a simple calculate using switch-

case statements

4.
Loops: do, while and for loops:

Use of while loop, do while, and

for loop: their Syntax

1. WAP to print counting 1 to 10 using all loop

2. WAP to print table of any number.

3. WAP to print the factorial of given number.

4. WAP to print the sum of digits of a given

number.

5

5. WAP to print the Fibonacci series up to 10 level.

6. WAP to find whether the given number is

Armstrong or Not.

7. WAP to find whether the given number is

Palindrome or Not.

8. WAP to find whether the given number is prime

or not.

9. WAP to reverse the digits of a given number.

5.
1D Arrays, 2 D array

Declaration of arrays, syntax,

semantics,

1. Program to insert 5 elements into array and print
elements of array.

2. WAP to merge two sorted array in one sorted
array.

3. WAP to add two matrices in 2-D array
4. WAP to multiply two matrices in 2-D array.
5. WAP to find transpose of a Matrix.
6. WAP to find average of 10 numbers using array.
7. WAP to print the following numbers in reverse

order using array.

6. Functions

Simple function declaration,

definition, functions with return

type, call by value.

1. WAP to create function display a simple message.
2. WAP to create function to add two numbers.
3. WAP to create a function to swap two numbers

using call by value.
4. WAP to generate Fibonacci series using recursive

function.
5. WAP to swip two integers using call by value and

call by reference method of passing arguments to
a function.

7. Pointers

Pointer declaration, use of pointers

in array, functions, call by

reference, recursive functions

1. WAP to understand basic use of pointers.
2. WAP to implement call by reference for

swapping of two numbers.
3. WAP to calculate factorial of a number using

recursion.
4. WAP to Fibonacci series up to 20 using recursive

numbers

8. Structure

Basic of Structure, Union and

accessing data of structure.

1. WAP for user defined data type namely Student
and implement it using Structure

2. WAP for user defined data type namely Book and
implement it using Structure..

3. WAP to create an array of structure.

9 File Operations

File opening modes, creation of

files, reading and writing data files.

1. WAP to read a simple file using file handling.
2. WAP to write data in file.
3. WAP to append data in existing file.

10. Searching and sorting

Various searching and sorting

algorithms .

1. WAP to implement linear search
2. WAP to implement binary search
3. WAP to implement selection sort.
4. WAP to implement insertion sort.
5. WAP to implement quick sort.
6. WAP to implement merge sort.
7. WAP to implement bubble sort.

Suggested Reference Books for solving the problems:

i. Byron Gottfried, Schaum’s Outline of Programming with C, McGraw-Hill

ii. B.A. Forouzan and R.F. Gilberg C Programming and Data Structures, Cengage

Learning, (3
rd

Edition)

iii. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice

iv. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.

6

PREFACE

This manual was developed specifically for fresh students taking up their first course in

programming. Its aim is to supplement classroom lectures by focusing on C programming. Topics

are arranged based on the order of class discussion. Students will be exposed to several new aspects

of programming. Students will get knowledge about the concepts in C programming which includes

functions, arrays, pointers, strctures e.t.c.

7

Practice sessions:-

1.Module Name:-Familiarization with Programming Environment

Introduction to C Programming:-
Programming is the process that professionals use to write code that instructs how a computer, application

or software program performs. At its most basic, computer programming is set of instructions to Computer

facilitate specific actions. Computer can do amazing things, from basic laptops capable of simple word

processing and spreadsheet functions to incredibly complex supercomputers completing millions of

financial transactions a day and controlling the infrastructure that makes modern life possible but no

computer can do anything until a computer programmer tells it to behave in specific ways. That is what

computer programming is all about .Compiler is used for performing translation.

C is a procedural programming language. It was initially developed by Dennis Ritchie in the year 1972.

It was mainly developed as a system programming language to write an operating system. The main

features of the C language include low-level memory access, a simple set of keywords, and a clean style

these features make C language suitable for system programs like an operating system or compiler

development.

C basic syntax: syntax refers to the rules that specify the correct combined sequence of symbols that can

be used to form a correctly structured program using a given programming language. Programmers

communicate with computers through the correctly structured syntax, semantics and grammar of a

programming language.

Basic structures of c language:

#include<stdio.h> header file

#include<conio.h>

Void main() main method declaration

{ opening bracket

Printf(“Add”) body

getch()

} closing brackets

HIGH LEVEL
LANGUAGE

COMPLIER
LOW LEVEL
LANGUAGE

#include

<stdio.h>

This is a preprocessor statement that includes standard input output header file (stdio.h)

from the C library. By including header file, you can use many different functions such

as printf()

void main()
The execution of the C program starts with main() function. “void” is the return type of the

8

Sample Program for Practice:-

1) First basic c program writing using single statement.
2) Write a program to print your basic details in multi statements.

2 Module:- Variable Type and Type Conversion

Operators in C:- An operator is a symbol that operats on a value or a variable.For example + is an

operator to perform addition. C has a wide range of operators to perform various operations.

 Airthmatic Operators

 Bitwise Operators

 Relational Operators

 Logical Operators

 Assignment Operators

Basic arithmetic operation
Start.

Enter (assigne) value of the variable (addend) X.

Enter (assigne) value of the variable (addend) Y.

Calculate Z (Z = X + Y)

Display result of addition, value of Z on the monitor with the message "The sum of X and Y is:"

1. Start.

2. Initialize int a,b,c,d,e,f;

3. Accept two numbers a and b from the user.

function. Every C program can have only one main function.

Braces {}
Two curly brackets {} are used to group all code statements. This indicates begins & ends

of the main function.

/* Comments

*/

Comments are just used to document or explain the code, to help others understand it.

Everything written inside the command /* */ will be ignored by the compiler.

printf() printf() is a function in C, which prints the text output on the screen.

getch() This is used to read any character input from the keyboard.

9

4. Perform addition and store the result in c.

5. Perform subtraction and store the result in d.

6. Perform division and store the result in e.

7. Perform multiplication and store the result in f.

8. Stop.

 Example:-variable A holds 10 and variable B holds 20 then −

Operator Description Example

== Checks if the values of two operands are equal or not. If yes, then the

condition becomes true.

(A == B)

is not

true.

!= Checks if the values of two operands are equal or not. If the values are not

equal, then the condition becomes true.

(A != B)

is true.

> Checks if the value of left operand is greater than the value of right operand.

If yes, then the condition becomes true.

(A > B)

is not

true.

< Checks if the value of left operand is less than the value of right operand. If

yes, then the condition becomes true.

(A < B)

is true.

>= Checks if the value of left operand is greater than or equal to the value of

right operand. If yes, then the condition becomes true.

(A >= B)

is not

true.

<= Checks if the value of left operand is less than or equal to the value of right

operand. If yes, then the condition becomes true.

(A <= B)

is true.

10

Relational Operators:-

Relational operators are used in decision making and loops.

Operator Meaning of Operator Example

== Equal to 5 == 3 is evaluated to 0

> Greater than 5 > 3 is evaluated to 1

< Less than 5 < 3 is evaluated to 0

!= Not equal to 5 != 3 is evaluated to 1

>= Greater than or equal to 5 >= 3 is evaluated to 1

<= Less than or equal to 5 <= 3 is evaluated to 0

Bitwise Operators:-

Operators Meaning of operators

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise complement

<< Shift left

>> Shift right

Logical Opertors:-

Operators Example/Description

&& (logical

AND)

(x>5)&&(y<5)

It returns true when both conditions are true

|| (logical OR)

(x>=10)||(y>=10)

It returns true when at-least one of the condition is true

https://www.programiz.com/c-programming/c-if-else-statement
https://www.programiz.com/c-programming/c-for-loop
https://www.programiz.com/c-programming/bitwise-operators#and
https://www.programiz.com/c-programming/bitwise-operators#or
https://www.programiz.com/c-programming/bitwise-operators#xor
https://www.programiz.com/c-programming/bitwise-operators#complement
https://www.programiz.com/c-programming/bitwise-operators#left-shift
https://www.programiz.com/c-programming/bitwise-operators#right-shift

11

! (logical NOT)

!((x>5)&&(y<5))

It reverses the state of the operand “((x>5) && (y<5))”

If “((x>5) && (y<5))” is true, logical NOT operator makes it false

Sample Program
3) Write a simple program that prints the results of all the operators available in C

(including pre/ post increment, bitwise and/or/not, etc.). Read required operand values

from standard input.

Data Type:-

 Each variable in C has an associated data type. Each data type requires different amounts

of memory and has some specific operations which can be performed over it. Let us briefly

describe them one by one:

Following are the examples of some very common data types used in C:

 char: The most basic data type in C. It stores a single character and requires a single

byte of memory in almost all compilers.

 int: As the name suggests, an int variable is used to store an integer.

 float: It is used to store decimal numbers (numbers with floating point value) with

single precision.

 double: It is used to store decimal numbers (numbers with floating point value) with

double precision.

Different data types also have different ranges upto which they can store numbers. These

ranges may vary from compiler to compiler.

Data Type

Memory

(bytes)

Range

Format Specifier

short int

2

-32,768 to 32,767

%hd

unsigned short int

2

0 to 65,535

%hu

unsigned int

4

0 to 4,294,967,295

%u

int

4

-2,147,483,648 to

2,147,483,647

%d

long int

4

-2,147,483,648 to

2,147,483,647

%ld

12

Data Type

Memory

(bytes)

Range

Format Specifier

unsigned long int

4

0 to 4,294,967,295

%lu

unsigned long long int

8

0 to

18,446,744,073,709,551,615

%llu

signed char

1

-128 to 127

%c

unsigned char

1

0 to 255

%c

float

4

 --

%f

double

8

 --

%lf

long double

16

 -- %Lf

Sample Program:-

4) Write a simple program that converts one given data type to
another using auto conversion and casting. Take the values

form standard input.

5) WAP to find area and perimeter of circle.

6) WAP to find area and perimeter of rectangle.

7) Given the values of three variable entered by user, write a

program to compute and display the value of x, where x=a/(b-

c).

8) Write a program for find the max and min from the three

numbers.

3 Module Branching & Logical expressions:-

If you put some condition for a block of statements, the execution flow may change based on

13

the result evaluated by the condition. This process is called decision making in 'C. ' It is also

called as branching as a program decides which statement to execute based on the result of

the evaluated condition.

 If Statement:-

The if statement evaluates the test expression inside the parenthesis () . If the test expression

is evaluated to true, statements inside the body of if are executed. If the test expression is

evaluated to false, statements inside the body of if are not executed.

Syntax:-

If (condition)

{

 //Block of C statements here

 //These statements will be execute if the condition is true

}

If else Statements:-
 The if-else is statement is an extended version of If. The general form of if-else is as follows:

Syntax:-

if (test-expression)

{

 True block of statements

}

Else

{

 False block of statements

}

Statements;

Nested Else-if statements:-

Nested else-if is used when multipath decisions are required.

The general syntax of how else-if ladders are constructed in ‘C’ programming is as follows:

Syntax:-

 if (test - expression 1) {

 statement1;

} else if (test - expression 2) {

 Statement2;

} else if (test - expression 3) {

 Statement3;

} else if (test - expression n) {

 Statement n;

} else {

14

 default;

}

Statement x;

This type of structure is known as the else if ladder.

Switch Statements:-

The switch statement allows us to execute one code block among many alternatives.

You can do the same thing with the if...else..if ladder. However, the syntax of

the switch statement is much easier to read and write.

Syntax:-

Switch (expression)

{

case constant1:

//statements

break;

case constant2:

// statements

break;

.

default:

//default statements

 }

Sample Programs:-
1) Program to find whether a given number is positive or not.
2) Program to find greatest of two numbers.
3) Program to find greatest of three numbers using nested if/else if statements only.
4) Program to find greatest of three numbers using & operator.
5) Program to find whether a given is divisible by 5 and 11.
6) Program to find whether a given number is even or odd.
7) Program to check the validity of a triangle when three angles are given.

8) Given the marks of a student studying five different subject. Calculate average

marks of students and assign him/her Grade based on following:Marks is equal or

greater than 90 – Grade AMarks equal or more than 75 and less than 90 –Grade

BMarks equal or more than 60 and less than 75 –Grade C Marks equal or more than

50 and less than 60 –Grade D Marks less than 50 –Grade F
9) Program to print day of a week using switch case statement.
10) Program to design a simple calculate using switch-case statements.

15

4 Module Loops:-

A loop statement allows us to execute a statement or group of statements multiple times.

Given below is the general form of a loop statement in most of the programming languages

−

C programming language provides the following types of loops to handle looping

requirements.

1 While loop-

Repeats a statement or group of statements while a given condition is true. It tests the condition

before executing the loop body.

Syntax:

While(test condition)

{

 Body of the loop

}

2 For loop-

Executes a sequence of statements multiple times and abbreviates the code that manages the

loop variable.

Syntax:-

For(initialization; test condition; increment or decrement)

{

 Body of the loop

}

3 do...while loop:-

It is more like a while statement, except that it tests the condition at the end of the loop body.

https://www.tutorialspoint.com/cprogramming/c_while_loop.htm
https://www.tutorialspoint.com/cprogramming/c_for_loop.htm
https://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm

16

Syntax:-

do

{

 body of the loop

}

While (test condition);

Sample Program:-
1) Program to print counting 1 to 10 using all loop
2) Program to print table of any number.
3) Program to print the factorial of given number.
4) Program to print the sum of digits of a given number.
5) Program to print the Fibonacci series up to 10 level.
6) Program to find whether the given number is Armstrong or Not.
7) Program to find whether the given number is Palindrome or Not.
8) Program to find whether the given number is prime or not.
9) Program to reverse the digits of a given number.

5 Module Array:-

 The syntax is the same as for a normal variable declaration except the variable name should

be followed by subscripts to specify the size of each dimension of the array. Array is defined

as the collection of similar type of data items stored at contiguous memory locations.

Arrays are the derived data type in C programming language which can store the primitive

type of data such as int, char, double, float, etc. The general form for an array declaration

would be:-

1) 1-D Array

2) 2-D array

1-D Array-

One dimensional array is an array that has only one subscript specification that is needed to

specify a particular element of an array. A one-dimensional array is a structured collection of

components (often called array elements) that can be accessed individually by specifying the

position of a component with a single index value.

Syntax:-data-type arr_name[array_size];

2- DArray-

The two-dimensional array can be defined as an array of arrays. The 2D array is organized as

matrices which can be represented as the collection of rows and columns. However, 2D

arrays are created to implement a relational database lookalike data structure. It provides ease

of holding the bulk of data at once which can be passed to any number of functions wherever

required.

Syntax:-data_type array_name[rows][columns];

17

Sample Program:-

1) Program to insert 5 elements into array and print elements of array.
2) Program to perform addition of two matrix.
3) Program to perform multiplication two matrix
4) Program to perform Transpose of 2 matrix.
5) Program to find average of 10 number using array.
6) Program to print the following numbers in reverse order using array.

6 Module Functions:-
In c, we can divide a large program into the basic building blocks known as function. The
function contains the set of programming statements enclosed by {}. A function can be called
multiple times to provide reusability and modularity to the C program. In other words, we can
say that the collection of functions creates a program. The function is also known
as procedure or subroutine in other programming languages.
Syntax:-

SN C function aspects Syntax

1 Function declaration return_type function_name (argument list);

2 Function call function_name (argument_list)

3 Function definition return_type function_name (argument list) {function body;}

Syntax:-

return_type function_name(data_type parameter...)

{

//code to be executed

}

Types of Functions:-

There are two types of functions in C programming:

1. Library Functions: are the functions which are declared in the C header files such as

scanf(), printf(), gets(), puts(), ceil(), floor() etc.

2. User-defined functions: are the functions which are created by the C programmer, so

that he/she can use it many times. It reduces the complexity of a big program and

optimizes the code.

Sample Program:-

1) Program to create function to add two numbers.
2) Program to create a function to swap two numbers using call by value.

18

3) Program to generate Fibonacci series using recursive function.
4) Program to swap two integers using call by value and call by reference methods

of passing arguments to a function.

7 Module Pointers:-
The pointer in C language is a variable which stores the address of another variable. This
variable can be of type int, char, array, function, or any other pointer. The size of the pointer
depends on the architecture. By the help of * (indirection operator), we can print the value
of pointer variable p.

Syntax:-

data_ type * pointer_ name;

Sample Program:-
1) Program to understand basic use of pointers.
2) Program to implement call by reference for swapping of two numbers.
3) Program to calculate factorial of a number using recursion.
4) Program to Fibonacci series up to 20 using recursive numbers.

8 Module Structure:-
Structure in c is a user-defined data type that enables us to store the collection of different

data types. Each element of a structure is called a member. Structures ca; simulate the use of

classes and templates as it can store various information. The ,struct keyword is used to

define the structure.

Syntax:-

 struct tag _name

{

 data_type member1;

 data_type member2;

 ------------- ------------

 ------------- ------------

};

Sample Program:-

1) Program to find user define data type namely student and implement it using array in

structure.

9 Module File Operations:-

File handling in C enables us to create, update, read, and delete the files stored on the local

file system through our C program. The following operations can be performed on a file.

o Creation of the new file

o Opening an existing file

o Reading from the file

19

o Writing to the file

o Deleting the file

Functions for file handling:-

There are many functions in the C library to open, read, write, search and close the file. A list

of file functions are given below:

No. Function Description

1 fopen() opens new or existing file

2 fprintf() write data into the file

3 fscanf() reads data from the file

4 fputc() writes a character into the file

5 fgetc() reads a character from file

6 fclose() closes the file

7 fseek() sets the file pointer to given position

8 fputw() writes an integer to file

9 fgetw() reads an integer from file

10 ftell() returns current position

11 rewind() sets the file pointer to the beginning of the file

Sample Program:-
1) WAP to read a simple file using file handling.
2) WAP to write data in file.
3) WAP to append data in existing file.

10 Module Searching and Sorting:-

Searching Algorithms are designed to check for an element or retrieve an element from any

data structure where it is stored.

Linear Search:-

A linear search, also known as a sequential search, is a method of finding an element

within a list. It checks each element of the list sequentially until a match is found or the

20

whole list has been searched.

Algorithm:-

Linear Search (Array A, Value x)

Step 1: Set i to 1

Step 2: if i > n then go to step 7

Step 3: if A[i] = x then go to step 6

Step 4: Set i to i + 1

Step 5: Go to Step 2

Step 6: Print Element x Found at index i and go to step 8

Step 7: Print element not found

Step 8: Exit

Binary search:-

Binary search is a fast search algorithm with run-time complexity of Ο(log n). This search

algorithm works on the principle of divide and conquer. For this algorithm to work properly,

the data collection should be in the sorted form.

Binary search looks for a particular item by comparing the middle most item of the

collection. If a match occurs, then the index of item is returned. If the middle item is greater

than the item, then the item is searched in the sub-array to the left of the middle item.

Otherwise, the item is searched for in the sub-array to the right of the middle item. This

process continues on the sub-array as well until the size of the subarray reduces to zero.

Procedure binary_search:-

 A ← sorted array

 n ← size of array

 x ← value to be searched

 Set lowerBound = 1

 Set upperBound = n

 while x not found

 if upperBound < lowerBound

 EXIT: x does not exists.

 set midPoint = lowerBound + (upperBound - lowerBound) / 2

 if A[midPoint] < x

 set lowerBound = midPoint + 1

 if A[midPoint] > x

 set upperBound = midPoint - 1

 if A[midPoint] = x

 EXIT: x found at location midPoint

 end while

end procedure

21

Sample Program:-
1) Write a program that uses function to search for a key value in a given list of

integer using linear search method.

2) Write a program that uses function to search for a key value in a given sorted

list of integer using Binary search method.

Sorting:-
Sorting refers to arranging data in a particular format. Sorting algorithm specifies the way to

arrange data in a particular order. Most common orders are in numerical or lexicographical

order.

Bubble Sort:-
Bubble sort is a simple sorting algorithm. This sorting algorithm is comparison-based

algorithm in which each pair of adjacent elements is compared and the elements are

swapped if they are not in order. This algorithm is not suitable for large data sets as its

average and worst case complexity are of Ο(n2) where n is the number of items.

begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

Insertion sort:-

This is an in-place comparison-based sorting algorithm. Here, a sub-list is maintained which

is always sorted. For example, the lower part of an array is maintained to be sorted. An

element which is to be 'insert'ed in this sorted sub-list, has to find its appropriate place and

then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the sorted

sub-list (in the same array). This algorithm is not suitable for large data sets as its average

and worst case complexity are of Ο(n2), where n is the number of items.

Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

22

Step 6 − Repeat until list is sorted

Selection Sort:-

Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-

based algorithm in which the list is divided into two parts, the sorted part at the left end and

the unsorted part at the right end. Initially, the sorted part is empty and the unsorted part is the

entire list.

The smallest element is selected from the unsorted array and swapped with the leftmost

element, and that element becomes a part of the sorted array. This process continues moving

unsorted array boundary by one element to the right.

This algorithm is not suitable for large data sets as its average and worst case complexities

are of Ο(n2), where n is the number of items.

Algorithm:-
Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

Merge Sort:-

Merge sort is a sorting technique based on divide and conquer technique. With worst-case

time complexity being Ο(n log n), it is one of the most respected algorithms.Merge sort first

divides the array into equal halves and then combines them in a sorted manner.

Step 1 − if it is only one element in the list it is already sorted, return.

Step 2 − divide the list recursively into two halves until it can no more be divided.

Step 3 − merge the smaller lists into new list in sorted order.

Quick sort:-

 Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of data

into smaller arrays. A large array is partitioned into two arrays one of which holds values

smaller than the specified value, say pivot, based on which the partition is made and another

array holds values greater than the pivot value. Quick sort partitions an array and then calls

itself recursively twice to sort the two resulting subarrays. This algorithm is quite efficient

for large-sized data sets as its average and worst-case complexity are O(n2), respectively.

Step 1 − Choose the highest index value has pivot

Step 2 − Take two variables to point left and right of the list excluding pivot

Step 3 − left points to the low index

Step 4 − right points to the high

Step 5 − while value at left is less than pivot move right

Step 6 − while value at right is greater than pivot move left

Step 7 − if both step 5 and step 6 does not match swap left and right

23

Step 8 − if left ≥ right, the point where they met is new pivot

Sample Programs:-

1) Write a C program that implements the Bubble sort method to sort a given list of

integers in ascending/ descending order.

2) Write a C program that sorts the given array of integers using selection

sort in descending order

3) Write a C program that sorts the given array of integers using insertion

sort in ascending order

4) Write a c program that sorts the given array of integers using quick sort and merge
sort.

	PREFACE
	Relational Operators:-
	Nested Else-if statements:-
	Types of Functions:-
	Functions for file handling:-
	Selection Sort:-
	Selection sort is a simple sorting algorithm. This sorting algorithm is an in-place comparison-based algorithm in which the list is divided into two parts, the sorted part at the left end and the unsorted part at the right end. Initially, the sorted p...
	Algorithm:-

	Merge Sort:-

