

KINEMATICS OF MACHINES (LAB)

General Course Information

Course Code: PCC-ME301-P	Course Assessment Methods (internal: 30; external:						
Course Category: Professional Core Course	70): Internal practical evaluation is to be done by the						
Course Credits: 1.0	course coordinator. The end semester practical						
Mode: Practical	examination will be conducted jointly by external and						
Contact Hours: 02 hours per week	internal examiners.						

Course Outcomes

Sr. No.	Course Outcome						
CO1	Students will be able to name various terms related to kinematics of machines like link,						
	kinematic pair, kinematic chain, mechanism and machine.						
CO2	Students will be able to describe link, kinematic pair, kinematic chain, mechanism and						
	machine through models.						
CO3	Students will be able to solve different kind of problems related to links, mechanisms and						
	machines experimentally.						
CO4	Students will be able to analyse different links, kinematic pairs, kinematic chains,	L4					
	mechanisms though models and experimentally.						
CO5	Students will be able to select and design appropriate element, pair, mechanism and machine						
	required for a particular application.						

Experiments in KOM Lab

- 1. To Study Various Types of Kinematic Links, Pairs, Chains and Mechanisms.
- 2. To Study Inversions of Four Bar, Single Slider and Double Slider Crank Chains.
- 3. To Study various joints like revolute, planes, spherical, cam follower and study the degree of freedom.
- 4. To study Universal Hook Joint and find out angle of adjustment on experimental set up.
- 5. To study oscillating cylinder mechanism on the working model.
- 6. To Find Coefficient of Friction Between Belt and Pulley, and Rope and Pulley.
- 7. To Study Various Types of Cam and Follower Arrangements.
- 8. To Plot Follower Displacement Vs Cam Rotation for Various Cam Follower Systems.
- 9. To Study Various Types of Gears: Spur, Helical, Double Helical, Worm, Spiral and Bevel Gears.
- 10. To Study Various Types of Gear Trains: Simple, Compound, Reverted and Epicyclic Gear Trains.
- 11. To study working of Differential Gear Train on the working Model.
 - 12. To establish graphically the relationship between stress and strain of helical spring under compression and extension.

Course Articulation Matrix (CO to PO/PSO Mapping)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	1								3	3		
CO ₂	3	2	1	1						2		3	3		
CO3	3	3	2	1	1				1	2		3	3		
CO4	3	3	2	2	1			1	2	2		3	3	1	1
CO ₅	3	2	3	2	2			1	2	2		3	3	2	3

1: (Slight/Low),

2:(Moderate/Medium),

3 .(Substantial/High)

KOM Lab

Sr.	Name of equipment	Qty	Date of
No.			Purchase
1.	Combined compressor & Extension of spring	01	07.02.2007
	apparatus		6×
2.	Combined plane & Friction slide apparatus	01	07.02.2007
3.	Rigidity of wires (Searle's Pattern)	01	07.02.2007
4.	Crank & slotted lever Mechanism	01	07.02.2007
5.	Screw jack apparatus	01	07.02.2007
6.	Combined coil & belt friction Apparatus	01	07.02.2007
7.	Hook joined apparatus	01	07.02.2007
8.	Slider crank mechanism Apparatus	01	07.02.2007
9.	Oscillating cylinder mechanism	01	07.02.2007
10.	Withworth quick system mechanism	01	07.02.2007
11.	Cam analysis apparatus	01	07.02.2007
12.	Model of Oldham coupling	01	Built In house
13.	Inclined plane apparatus	01	Built In house
14.	Compound screw jack apparatus	01	Built In house
15.	Differential Gear Train	01	Built In house

KOM Lab

Cut Out working model of Differential

Belt/Rope Friction Apparatus

Crank & Slotted Mechanism Apparatus

Inclined Plane Apparatus

Cam Analysis Apparatus

Compound Screw Jack Apparatus

Oscillating Cylinder Working Model

Working Model of Slider Crank Mechanism

Working Model of Hook Joint Apparatus

Mechanism

Mechanism

H. Illings Child

Automatic board cleaning mechanism

Whitworth Quick Return Mechanism

Compound Screw Jack